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1. Extended Real Numbers

Recall that the extended real numbers consist of the real numbers together with
two symbols for plus and minus infinity:

R = R ∪ {±∞}.
We write∞ for +∞. We order the set R by defining −∞ < x <∞ for all x ∈ R. It
then makes sense to write R = [−∞,∞]. When this set is endowed with the order
topology, it is homeomorphic to [0, 1].

We will use the following facts regarding extended real numbers without further
comment.

• Every nonempty subset of R has a supremum and an infimum in R.
• Every monotone sequence in R has a limit in R.
• Every series of nonnegative real terms converges in R.
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2. Set Functions

We are interested in functions which associate an extended real number to each
set in a collection of sets. This will allow us to generalize the notion of the length
of an interval.

Let X be a set and let C ⊂ X. A set function on C is a function

γ : C→ R.
A set function may have one or more of the following properties, assuming that

C is closed under the appropriate unions (finite or countable unions).

• Monotone: for C1, C2 ∈ C with C1 ⊂ C2,

γ(C1) ≤ γ(C2).

• Additive: for C1, C2 ∈ C with C1 ∩ C2 = ∅,

γ(C1 ∪ C2) = γ(C1) + γ(C2).

• Finitely additive: for C1, . . . , Cn ∈ C with Ci ∩ Cj = ∅ for i 6= j,

γ(∪ni=1Ci) =

n∑
i=1

γ(Ci).

• Countably additive: for each sequence (Cn) in C with Ci∩Cj = ∅ for i 6= j,

γ(∪∞i=1Ci) =

∞∑
i=1

γ(Ci).

• Subadditive: for C1, C2 ∈ C,

γ(C1 ∪ C2) ≤ γ(C1) + γ(C2).

• Finitely subadditive: for C1, . . . , Cn ∈ C,

γ(∪ni=1Ci) ≤
n∑
i=1

γ(Ci).

• Countably additive: for each sequence (Cn) in C,

γ(∪∞i=1Ci) ≤
∞∑
i=1

γ(Ci).

It is clear that additive implies finitely additive, by induction. Also, subaddi-
tive implies finitely subadditive. Also, countably additive implies additive, and
countably subadditive implies subadditive.

Proposition 1. Let A be an algebra of subsets of a set X, and let γ : A→ [0,∞].
If γ is additive, then γ is monotone and subadditive.

Proof. Suppose that γ is additive.
First we show that γ is monotone. Let A1, A2 ∈ A with A1 ⊂ A2. Then

B = A2 r A1 = A2 ∩ Ac1 ∈ A. By additivity, γ(A2) = γ(A1 ∪ B) = γ(A1) + γ(B),
and since γ(B) is nonnegative, γ(A2) ≥ γ(A1). Thus γ is subadditive.

Next we show that γ is subadditive. Let A1, A2 ∈ A. Let B = A1 ∩ A2. Now
A1 ∪A2 = (A1 rB) ∪B ∪ (A2 rB) = (A1 ∩Bc) ∪B ∪ (A2 ∩BC) ∈ A. These sets
are disjoint, so γ(A1 ∪A2) = γ(A1 rB) + γ(B) + γ(A2 rB). �
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Proposition 2. Let A be a σ-algebra of subsets of a set X, and let γ : A→ [0,∞].
If γ is countably additive, then γ is countably subadditive.

Proof. Suppose that γ is countably additive. Note that this implies that γ is addi-
tive, and hence monotone.

Let (An) be a sequence in A. Set B1 = A1, and for n ≥ 2, set Bn = An r
(∪n−1i=1 Ai). Then (Bn) is a sequence of disjoint sets with ∪∞n=1Bn = ∪∞n=1An. Also,
Bn ⊂ An for all n, and by monotonicity, γ(Bn) ≤ γ(An). Thus,

γ(∪∞n=1An) = γ(∪∞n=1Bn =

∞∑
n=1

γ(Bn) ≤
∞∑
n=1

γ(An).

�

Proposition 3. Let A be a σ-algebra of subsets of a set X, and let γ : A→ [0,∞].
If γ is additive and countably subadditive, then γ is countably additive.

Proof. Suppose that γ is additive and countably subadditive. Then γ is monotone.
Let (An) be a sequence of disjoint sets in A. By subadditivity, γ(∪∞i=1Ai ≤∑∞
i=1Ai, so we wish to see that

∑∞
i=1Ai ≤ γ(∪∞i=1Ai.

By additivity and monotonicity,
∑n
i=1 γ(Ai) = γ(∪ni=1γ(Ai) ≤ γ(∪∞i=1γ(Ai). So,

for all n,
∑n
i=1 γ(Ai) is bounded above by γ(∪∞i=1γ(Ai). This inequality survives

the limit, so
∞∑
i=1

γ(Ai) = lim
n→∞

n∑
i=1

γ(Ai) ≤ γ(∪∞i=1γ(Ai).

�

3. Measures

Definition 1. Let X be a set and let E be a σ-algebra of subsets of X. A measure
on E is a function µ : E→ R such that

(M1) µ(E) ≥ 0 for all E ∈ E;
(M2) µ(∅) = 0;
(M3) (En) disjoint sequence in E implies µ(∪∞n=1En) =

∑∞
n=1 µ(En).

A measure space is a triple (X,E, µ), where X is a set, E is a σ-algebra of subsets
of X, and µ is a measure on X.

Proposition 4. Let µ be a measure on a σ-algebra E of subsets of a set X. Then
µ is

(a) Additive
(b) Subadditive
(c) Monotone
(d) Countably additive
(e) Countably subadditive
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Theorem 1 (Monotone Convergence Theorem). Let µ be a measure on a σ-algebra
E of subsets of a set X, and let (En) be a monotone sequence in E. Then

(a) If (En) is expanding, then limn→∞ µ(En) = µ(limn→∞En).
(b) If (En) is contracting, then limn→∞ µ(En) = µ(limn→∞En), provided that

there exists a set A ∈ E with E1 ⊂ A and µ(A) <∞.

Proof. (a) Suppose (En) is expanding. Then limn→∞En = ∪∞n=1En.
Set E0 = ∅ and for n ≥ 1, set Fn = En r En−1. Since En−1 ⊂ En, we have

µ(Fn) = µ(En)− µ(En−1).
Then (Fn) is a sequence of disjoint sets, and ∪∞n=1Fn = ∪∞n=1En. However, notice

that
n∑
i=1

µ(Fn) =

∞∑
i=1

µ(Ei)− µ(Ei−1) = µ(En)− µ(E0) = µ(En),

as this is a telescoping sum. Thus
∞∑
n=1

µ(Fn) = lim
n→∞

n∑
i=1

µ(Fi) = lim
n→∞

µ(En).

So,

µ( lim
n→∞

En) = µ(∪∞n=1En) = µ(∪∞n=1Fn) =

∞∑
n=1

µ(Fn) = lim
n→∞

µ(En).

(b) Suppose that (En) is contracting. Then limn→∞En = ∩∞n=1En.
We assume E1 is contained in a set of finite measure; let us call it E0.
Set Fn = En r En+1. We claim that

∪∞n=1Fn = E1 r ∩∞n=1En.

Each Fn is a subset of En, and En ⊂ E1. Thus the left hand side is contain in the
right hand side. On the other hand, if x ∈ E1 r ∩∞n=1En, then x /∈ Ek+1 for some
k. If we take the smallest such k, we have x ∈ Fk = Ek r Ek+1, so x ∈ ∪∞n=1Fn.

Now (Fn) is a sequence of disjoint sets, and µ(Fn) = µ(En) − µ(En+1). So,∑n
i=1 µ(Fi) =

∑n
i=1 µ(En)− µ(En+1) = µ(E1)− µ(En+1), and in the limit,

µ(E1)− µ(∩∞n=1En) = µ(E1 r ∩∞n=1En)

= µ(∪∞n=1Fn)

=

∞∑
n=1

µ(Fn)

= lim
n→∞

µ(E1)− lim
n→∞

µ(En+1)

= µ(E1)− lim
n→∞

µ(En).

It follows that limn→∞ µ(En) = µ(∩∞n=1). �
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4. Lengths of Sets

We define what it means to be the length of an interval, of and open sets, and
of a bounded closed set. We will use this to define Lebesgue measure in the real
numbers, which generalizes length.

Definition 2. Let A ⊂ R be nonempty and connected. The length of A is

`(A) = supA− inf A.

The types of connected sets are the empty set, singleton sets, and intervals. The
length of the empty set is not defined. The length of a singleton is zero. The length
of [a, b) is b− a.

Recall that an open set is a union of countably many disjoint open intervals.
This is what allows the next definition.

Definition 3. Let G ⊂ R be open. Define the length of G, denoted `(G), to be the
sum of the length of the disjoint components of G.

Recall that the smallest closed interval of a set A is sci(A) = [inf A, supA].

Definition 4. Let F ⊂ R be bounded and closed, and let J = sci(F ). Define the
length of F , denoted `(F ), to be `(J)− `(J r F ).

Proposition 5. Let I be a collection of pairwise disjoint subintervals of an interval
J . Then the sum of the lengths of the intervals in I is bounded above by the length
of J : ∑

I∈I

`(I) ≤ `(J).

Proof. First assume that I is finite, say I = {I1, . . . , In}. Let ak = inf Ik, and
bk = sup Ik. Let a = inf J and b = supJ . Then

a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn ≤ b.
Thus

(b− bn) + (an − bn−1) + · · ·+ (a2 − b1) + (a1 − a) ≥ 0,

which implies that `(J) ≥
∑n
k=1 `(Ik).

Next, suppose that I = {Ik | k ∈ N} is an infinite countable collection of intervals.
Then for every partial sum,

∑n
k=1 `(Ik) ≤ `(J). The sequence of partial sums is a

bounded nondecreasing sequence, so it converges; thus∑
k∈N

`(Ik) = lim
n→∞

n∑
k=1

`(Ik) ≤ `(J).

�

Proposition 6. Let U and V be bounded open sets such that V ⊂ U . Then
`(V ) ≤ `(U).

Proof. Each of these open sets is a union of countably many components, which
are open intervals. So, let {Uα | α ∈ A} be the collection of components of U ,
where α ranges over some indexing set A. Each component of V is contained in a
component of U ; let {Vα,β | β ∈ Bα} denote the set of components of V which are
contained in Uα. Now, by Proposition 5,

`(V ) =
∑
α∈A

∑
β∈Bα

`(Vα,β) ≤
∑
α

`(Uα) = `(U).
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�

Corollary 1. Let U be an open set. If G is the collection of all bounded open sets
containing U , then `(U) = inf{`(G) | G ∈ G}.

Proof. First, note that U ∈ G, so `(U) ≥ inf{`(G) | G ∈ G}. However, if G ∈ G,
then U ⊂ G, so `(U) ≤ `(G) by Proposition 6; thus `(U) ≤ inf{`(G) | G ∈ G}.
Thus `(U) = inf{`(G) | G ∈ G}. �

Lemma 1. Let A,B,C ⊂ R be intervals such that A = B ∪ C. Then `(A) ≤
`(B) ∪ `(C).

Proof. Let a1 = inf A, a2 = supA, b1 = inf B, b2 = supB, c1 = inf C, and
c2 = supC. Either b1 = a1 or c1 = a1, so, without loss of generality, assume
a1 = b1.

If C ⊂ B, then `(A) = `(B) ≤ `(B) + `(C), so we may assume that c2 = a2.

If b2 < c1, then
b2 + c1

2
is in A but not in B ∪ C. So we see that b2 ≥ c1. Thus

`(A) = a2− a1 = c2− b1 ≤ c2− b1 + (b2− c1) = (c2− c1) + (b2− b1) = `(C) + `(B).

�

Lemma 2. Let J be a bounded open interval, and let I be a countable collection of
open intervals such that J = ∪I. Then `(J) ≤

∑
I∈I `(I).

Proof. Let a = inf J and b = sup J so that J = (a, b). For each ε ∈ R with

0 < ε <
b− a

2
, let Fε = [a+ ε/2, b− ε/2]. Then I is an open cover of Fε, and Fε is

compact, so I has a finite subcover, say C ⊂ I with Fε ⊂ ∪C.
We claim that `(Fε) ≤

∑
C∈C `(C). Since C is finite, this follows from Lemma 1,

and induction.
Now

`(J) = `(Fε) + ε ≤
∑
C∈C

C + ε ≤
∑
I∈I

`(I) + ε.

Since this is true for all ε > 0, we have `(J) ≤
∑
I∈I `(I). �

Lemma 3. Let U be a bounded open set, and let I be a countable collection of open
intervals such that U = ∪I. Then `(U) ≤

∑
I∈I `(I).

Proof. We know that U is the union of countably many disjoint open intervals.
Let {Jα | α ∈ A} be the collection of components of U , where α ranges over the
indexing set A. Then U = ∪α∈AJα.

Each of the intervals in I is contained in exactly one of the Jα, and the union
of the intervals from I in Jα equals Jα. Let {Iα,β | β ∈ Bα} be the collection of
intervals from I which are contained in Jα, where β ranges over the indexing set
Bα. Then Jα = ∪β∈BαIα,β . By Lemma 2,

`(U) =
∑
α∈A

`(Jα) ≤
∑
α∈A

∑
β∈Bα

`(Iα,β) =
∑
I∈I

`(I).

�
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Proposition 7. Let U be a bounded open set, and let G be a countable collection
of open sets such that U = ∪G. Then `(U) ≤

∑
G∈G `(G).

Proof. Each of the open sets in G is a union of disjoint open intervals. Let I be the
collection of open intervals in any of the sets in G. Then

∑
I∈I `(I) ≤

∑
G∈G `(G),

with equality if and only if no two of the sets in G share a common component.
Thus, by Lemma 3

`(U) ≤
∑
I∈I

`(I) ≤
∑
G∈G

`(G).

�

Proposition 8. Let F be a bounded closed set contained in an open interval I.
Then

`(I r F ) = `(I)− `(F ).

Proof. Let I = (a, b), c = inf F , and d = supF . Since F is closed and contained in
I, a < c ≤ d < b.

Let G = [c, d]rF . By definition, `(F ) = (d−c)−`(G), so that `(G) = d−c−`(F ).
Now I r F is the open set which is the disjoint union of G, (a, c), and (d, b).

Thus

`(IrF ) = `(G)+(c−a)+(b−d) = d−c−`(F )+c−a+b−d = b−a−`(F ) = `(I)−`(F ).

�

Proposition 9. Let F and E be two bounded closed sets such that F ⊂ E. Then
`(F ) ≤ `(E).

Proof. Let I be an open interval which properly contains E. Let U = I r F and
V = I r E. By Proposition 8, `(U) = `(I)− `(F ) and `(V ) = `(I)− `(E).

Since F ⊂ E, we see that V ⊂ U . Thus, by Proposition 6, `(V ) ≤ `(U); that is,
`(I)− `(E) ≤ `(I)− `(F ). Thus `(F ) ≤ `(E). �

Corollary 2. Let E be a bounded closed set. If F is the collection of all closed sets
contained in E, then `(E) = sup{`(F ) | F ∈ F}.

Proof. Since E ∈ F, `(E) ≤ sup{`(F ) | F ∈ F}. On the other hand, if F ∈ F, then
F ⊂ E, so `(E) ≥ `(F ). Thus `(E) ≥ {`(F ) | F ∈ F}. �

Proposition 10. Let F be a bounded closed set and let G be a bounded open set,
with F ⊂ G. Then `(F ) ≤ `(G).

Proof. Let I be an open interval containingG. Then I = G∪(IrF ). By Proposition
7 and Proposition 8,

`(I) ≤ `(G) + `(I r F ) = `(G) + `(I)− `(F ),

whence, `(F ) ≤ `(G). �
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Theorem 2. Let G be a bounded open set, and let F be the collection of all closed
sets contained in G. Then `(G) = sup{`(F ) | F ∈ F}.

Proof. If F ∈ F, then `(G) ≥ `(F ) by Proposition 10, so `(G) ≥ sup{`(F ) | F ∈ F}.
Let ε > 0.
We know that G is a disjoint union of countably many open intervals. If G

has finitely many components, let n ∈ N denote the number of components, and let
I1, . . . , In be the components. If G has infinitely many components, let {Ik | k ∈ N}
be the collection of components; then `(G) =

∑∞
i=1 `(Ik), which converges. Thus

there exists n ∈ N such that `(G)−
∑n
k=1 `(Ik) <

ε

2
. Thus `(∪∞k=n+1Ik) <

ε

2
.

Let Ik = (ak, bk). Let δk = min{ ε
4n
,
bk − ak

3
}, and let Fk = [ak + δk, bk − δk].+

Let F = ∪k=1nFk. Since F is a union of finitely many closed sets, F is itself closed.
Clearly, F ⊂ G, so F ∈ F.

We see that `(F ) =
∑n
k=1(bk − ak − 2δk) ≥ `(∪nk=1Ik)− ε

2
. So

`(G) = `(∪nk=1Ik) + `(∪∞k=n+1Ik) <

(
`(F ) +

ε

2

)
+
ε

2
,

that is, `(G) < `(F ) + ε.
So, for every ε > 0, there exists F ∈ F such that `(G) < `(F ) + ε. Thus

`(G) ≤ sup{`(F ) | F ∈ F}. �

Theorem 3. Let F be a bounded closed set, and let G be the collection of all open
sets which contain F . Then `(F ) = inf{`(G) | G ∈ G}.

Proof. If G ∈ G, then `(F ) ≤ `(G) by Proposition 10, so `(F ) ≤ inf{`(G) | G ∈ G}.
Let ε > 0.
Let I be an open interval which contains F , and set U = IrF . Then U is open,

and by Theorem 2, `(U) is the supremum of the lengths of closed sets contained in
U . Thus, there is a closed set K ⊂ U such that `(U)− `(K) < ε. Let G = I rK,
so that G is an open set which contains F , and

`(G) = `(I)− `(K) < `(I)− `(U) + ε = `(I)− (`(I r F ) + ε = `(F ) + ε.

Thus, for each ε > 0, there exists an open set G containing F such that `(G) <
`(F ) + ε, which shows that `(F ) ≥ inf{`(G) | G ∈ G}. �
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5. Lebesgue Measure

Definition 5. Let A ⊂ R be bounded.
The outer measure of A is

µ∗(A) = inf{x ∈ R | x = `(G) for some open set G ⊂ R such that A ⊂ G}.
The inner measure of A is

µ∗(A) = sup{x ∈ R | x = `(K) for some compact set K ⊂ R such that K ⊂ A}.
We say that A is measurable if µ∗(A) = µ∗(A). If A is measurable, the Lebesgue

measure of A is
µ(A) = µ∗(A) = µ∗(A).

We given a direct proof of the following fact to demonstrate the sort of proof
technique we have available. An alternate proof of the following appears later.

Proposition 11. Let K ⊂ R be compact. Then

`(K) = µ∗(K).

Proof. Recall that `(K) = supK − inf K − `(sci(K) rK).
Let G = sci(K) r K. Then G is a union of countably many disjoint open

intervals, which are its components. We will argue the case that G has infinitely
many components, the situation for finitely many being a simple change of notation.

LetG1, G2, . . . be the components ofG. Then there exist real numbers an, bn ∈ R
such that Gn = (an, bn), for n ∈ N.

Let ε > 0. Set δn = min{ ε
2n
,
bn − an

n
}, and let Fn = [an − δn, bn + δn]. Note

that
∑n
i=1 δi ≤ ε

∑n
i=1

1

2n
= ε(2− 1

2n
).

Let U = (inf K − ε, supK + ε). Let Un = U r ∪ni=1Fn. Then Un is an open set,
and K ⊂ Un. We have

`(Un) = (supK−inf K+2ε)−
n∑
i=1

(bn−an+2δn) ≤ supK−inf K+`(∪ni=1Gi)+2ε(3− 1

2n
).

Take the limit as n→∞;

µ∗(K) ≤ lim
n→∞

Un ≤ supK − inf K + `(G) + 6ε = `(K) + 6ε.

Since this is true for every ε > 0,

µ∗(K) ≤ `(K).

�
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Proposition 12. Let A ⊂ R be bounded. Then µ∗(A) ≤ µ∗(A).

Proof. Let F denote the collection of closed sets contained in A, and G the collection
of open sets containing A.

If F ∈ F and G ∈ G, then F ⊂ A ⊂ G, so `(F ) ≤ `(G), by a previous proposition.
So,

µ∗(A) = sup{`(F ) | F ∈ F} ≤ inf{`(G) | G ∈ G} = µ∗(A).

�

Proposition 13 (Measurability of Open Sets). Let U ⊂ R be bounded and open.
Then U is measurable, and µ(U) = `(U).

Proof. Let G be the collection of open sets that contain U . Then U ∈ G, so

`(U) ≥ inf{`(G) | G ∈ G}.
On the other hand, if G is an open set which contains U , then `(U) ≤ `(G); thus

`(U) ≤ inf{`(G) | G ∈ G}.
The result follows. �

Proposition 14 (Measurability of Closed Sets). Let K ⊂ R be bounded and closed.
Then K is measurable, and µ(K) = `(K).

Proof. Let F be the collection of closed sets contained in K. Then K ∈ F, so

`(K) ≤ sup{`(F ) | F ∈ F}.
On the other hand, if F is a closed set which contained in K, then `(K) ≥ `(F );
thus

`(K) ≥ sup{`(F ) | F ∈ F}.
The result follows. �

Proposition 15 (Monotonicity of Outer and Inner Measure). Let A,B ⊂ R be
bounded, with A ⊂ B. Then

(a) µ∗(A) ≤ µ∗(B)
(b) µ∗(A) ≤ µ∗(B)

Proof. We’ll discuss (a) and then (b), even though they are analogous. We will
use the following: if X ⊂ Y ⊂ R, then inf X ≥ inf Y , and supX ≤ supY .

(a) Let U denote the set of all open sets which contains A, and let V denote the
set of all open sets which contain B. Since A ⊂ B, every open set containing B
also contains A, so V ⊂ U. Therefore, {`(V ) | V ∈ V} ⊂ {`(U) | U ∈ U}. It follows
that

µ∗(A) = inf{`(V ) | V ∈ V} ≤ inf{`(U) | U ∈ U} = µ∗(B).

(b) Let E denote the set of all closed sets which contained in A, and let F denote
the set of all closed sets which contained B. Since A ⊂ B, every closed set contained
in A is also contained in B, so E ⊂ F. Therefore, {`(E) | E ∈ E} ⊂ {`(F ) | F ∈ F}.
It follows that

µ∗(A) = sup{`(E) | E ∈ E} ≤ sup{`(F ) | F ∈ F} = µ∗(B).

�
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Proposition 16 (Measurability of Sets of Outer Measure Zero). Let A ⊂ R be
bounded with µ∗(A) = 0. Then A is measurable, with µ(A) = 0.

Proof. We know that 0 ≤ µ∗(A) ≤ µ∗(A) = 0. Thus µ∗(A) = 0, so µ∗(A) = µ∗(A),
and Ais measurable, which µ(A) = µ∗(A) = 0. �

Proposition 17 (Measurability of Countable Sets). Let A ⊂ R be bounded and
countable. Then A is measurable, and µ(A) = 0.

Proof. Let ε > 0.
Suppose A is finite, and let A = {a1, . . . , an}. Let U = ∪ni=1(a1−ε/2n, ai+ε/2n).

Then A ⊂ U , and `(U) ≤
∑n
i=1

ε

n
= ε, so `(A) ≤ ε.

Suppose A is infinite, and let A be the image of the sequence (ai). Let U =

∪∞i=1(ai −
ε

2 · 2i
, ai +

ε

2 · 2i
). Then A ⊂ U , and `(U) ≤

∑∞
i=1

ε

2n
= ε, so `(A) ≤ ε.

In either case, µ∗(A) ≤ `(U) ≤ ε, and since ε is arbitrary, µ∗(A) = 0. Thus A is
measurable, and µ(A) = 0. �

Proposition 18 (Countable Subadditivity of Outer Measure). Let C be a countable
collection of sets whose union is bounded. Then

µ∗(∪C) ≤
∑
C∈C

µ∗(C).

Proof. The result is immediate if the series on the right diverges; thus we assume
that it converges.

Let C = {C1, C2, . . . }. If C happens to be finite, let Ck = ∅ for k > |C|.
For each i ∈ N there exists an open set Gi ⊃ Ci such that `(Gi) < µ∗(Ci) +

ε

2i
,

and let G = ∪∞i=1`(Gi). Then, by subadditivity of lengths of open sets,

`(G) ≤
∑

`(Gi) < (

∞∑
i=1

µ∗(Ci)) + ε.

Now ∪C ⊂ G, so µ∗(∪C) ≤ `(G) <
∑
C∈C µ

∗(C) + ε, and since this is true of all
ε > 0, the result follows. �
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Proposition 19 (Finite Additivity of Measure for Closed Sets). Let F be a finite
collection of nonempty bounded disjoint closed sets. Then

µ(∪F) =
∑
F∈F

µ(F ).

Proof. The result is immediate if the series on the right diverges; thus we assume
that it converges.

We have shown that for open and closed sets, length equals outer measure equals
inner measure. So, we can use these interchangeably, to emphasize our point of view
in a given instance.

By Proposition 18, we see that µ∗(∪F) ≤
∑
F∈F µ

∗(F ). We wish to show the
reverse inequality. It suffices to assume that F contains two sets, as the finite case
will follow by induction.

Let F1 and F2 be bounded closed sets. We wish to show that µ(F1 ∪ F2) ≥
µ(F1)+µ(F2). Since F1 and F2 are compact, there exist disjoint open sets U1 ⊃ F1

and U2 ⊃ F2.
Let ε > 0, and let G be an open set such that `(G) − µ(F1 ∪ F2) ≤ ε. Let

G1 = U1 ∩G and G2 = U2 ∩G. Then G1 and G2 are disjoint open sets contained
in G whose union contains F1 ∪ F2, and `(G1 ∪ G2) ≤ `(G) ≤ µ∗(F1 ∪ F2) + ε.
Therefore

µ(F1) + µ(F2) ≤ µ(G1) + µ(G2) ≤ µ(G) ≤ µ∗(F1 ∪ F2) + ε.

Since this is true for all ε > 0, we conclude that

µ(F1) + µ(F2) ≤ µ(F1 ∪ F2).

The result follows. �
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Proposition 20 (Reverse Subadditivity for Disjoint Closed Sets). Let C be a count-
able collection of disjoint sets whose union is bounded. Then

µ∗(∪C) ≥
∑
C∈C

µ∗(C).

Proof. First, suppose that C is finite. Then C = {C1, . . . , Cn} for some distinct
disjoint sets Ck. For each k, let Fk ⊂ Ck be a closed set such that µ∗(Ck)−`(Fk) <
ε

2n
. Then

∑n
k=1 `(Fk) >

∑n
k=1 µ∗(Ck) + ε.

Let F = ∪ni=1Fk; then by Proposition 19, `(F ) =
∑n
k=1 `(Fk).

Let C = ∪nk=1Ck; then F is a closed set contained in C, so `(F ) ≤ µ∗(C).
Putting this together,

µ∗(∪C) = µ∗(C) > `(F ) =

n∑
k=1

`(Fk) >

n∑
k=1

µ∗(Ck) + ε.

Since this is true for every ε > 0, the result follows in the finite case.
Now assume that C is countably infinite, and let C = {Ck | k ∈ N}, where the

Ck are distinct. By Proposition 15 and the finite case,

µ∗(∪∞k=1Ck) ≥ µ∗(∪nk=1Ck) ≥
n∑
k=1

µ∗(Ck).

This is true for all n ∈ N, so taking the limit as n→∞,

µ∗(∪∞k=1Cn) ≥
∞∑
k=1

µ∗(Ck).

�
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Proposition 21 (Countable Additivity of Measure). Let S be a countable collection
of disjoint measurable sets. Then ∪S is measurable, and

µ(∪S) =
∑
S∈S

µ(S).

Proof. By Proposition 12, µ∗(∪S) ≤ µ∗(∪S).
By Proposition 18, µ∗(∪S) ≤

∑
S∈S µ

∗(S).
By Proposition 20, µ∗(∪S) ≥

∑
S∈S µ∗(S).

Since the sets in S are measurable,
∑
S∈S µ∗(S) =

∑
S∈S µ

∗(S).
Combine these to get

µ∗(∪S) ≤
∑
S∈S

µ∗(S) =
∑
S∈S

µ∗(S) ≤ µ∗(∪S) ≤ µ∗(∪S).

The result follows. �

Corollary 3. If a closed set F is contained in an open set G, then µ(G) = µ(F ) +
µ(Gr F ).

Proof. SinceGrF is open, GrF is measurable. The result follows from Proposition
21. �

Corollary 4. If an open set G is contained in a closed set F , then µ(F ) = µ(G) +
µ(F rG).

Proof. Since FrG is open, FrG is measurable. The result follows from Proposition
21. �

Corollary 5. If F is a closed set contained in a closed interval [a, b], then [a, b]rF
is measurable and µ([a, b] r F ) = (b− a)− µ(F ).

Proof. Let G = (a, b) r F . Then G is open, and thus measurable.
If {a, b} ⊂ F , then [a, b] r F = G is open, and thus measurable.
Otherwise, if a ∈ F , then [a, b] r F = G ∪ {b} is the union of measurable sets,

and thus measurable.
Otherwise, if b ∈ F , then [a, b] r F = G ∪ {a} is the union of measurable sets,

and thus measurable.
Otherwise, [a, b] r F = G ∪ {a, b} is the union of measurable sets, and thus

measurable.
The result follows from additivity. �
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Proposition 22. Let A ⊂ R be bounded. Then A is measurable if and only if for
every ε > 0 there exists a bounded open set G ⊃ A and a bounded closed set F ⊂ A
such that µ(G)− µ(F ) < ε.

Proof. We use the fact that if B is open or closed, we have `(B) = µ(B).
Suppose that A is measurable, and let ε > 0. There exists a closed set F ⊂ A such

that µ∗(A)− `(F ) <
ε

2
. There exists an open set G ⊃ A such that `(G)− µ∗(A) <

ε

2
. Adding these inequalities, and using the fact that µ∗(A) = µ∗(A), we get

µ(G)− µ(F ) < ε.
Conversely, suppose that for every ε > 0 there exists a closed set F ⊂ A and

an open set G ⊃ A such that µ(G) − µ(F ). Thus let ε, G, and F be as stated.
We have We see that µ(F ) ≤ µ∗(A) ≤ µ∗(A) ≤ µ(G). Thus, µ∗(A) + ε ≥ µ∗(A).
Since this is true for all ε > 0, we see that µ∗(A) ≥ µ∗(A). But we always have
µ∗(A) ≤ µ∗(A), so µ∗(A) = µ∗(A); therefore, A is measurable. �

Proposition 23. Let S be a finite collection of measurable sets. Then ∪S is mea-
surable.

Proof. We may assume that S contains two sets; the finite case follows by induction.
Thus let S = {S1, S2}, and let ε > 0. By Proposition 22, for k = 1, 2, there

exist closed sets Fk ⊂ Sk and open sets Gk ⊃ Sk, such that µ(Gk) − µ(Fk) <
ε

2
.

Let S = S1 ∪ S2, G = G1 ∪ G2 and F = F1 ∪ F2. Clearly, F ⊂ S ⊂ G. Also,
Gr F ⊂ (G1 r F1) ∪ (G2 r F2).

Now

µ(G)−µ(F ) = µ(GrF ) ≤ µ(G1rF1)+µ(G2rF2) = µ(G1)−µ(F1)+µ(G2)−µ(F2) < ε.

By Proposition 22, S is measurable. �

Proposition 24. Let A ⊂ [a, b]. Then

µ∗(A) + µ∗([a, b] rA) = b− a.

Proof. Let B = [a, b] rA. We wish to show that µ∗(A) + µ∗(B) = b− a.
Let ε > 0.
There exists an open set G ⊃ A such that `(G)− µ∗(A) < ε. Let F = [a, b]rG.

Then F is closed, and F ⊂ B. Thus

µ∗(B) ≥ `(F ) ≥ b− a− `(G) ≥ b− a− µ∗(A)− ε,
that is, µ∗(A) +µ∗(B) + ε ≥ b− a. Since this is true for all ε > 0, µ∗(A) +µ∗(B) ≥
b− a.

To obtain the reverse inequality, realize that there exists a closed set F ⊂ B
such that µ∗(B) − `(F ) ≤ ε. Clearly A ⊂ [a, b] r F , so by Proposition 5 µ∗(A) ≤
µ([a, b] r F ) = b− a− `(F ).

Let δ > 0 and let G = (a − δ/2, b + δ/2) r F . Then G is an open set which
contains A, so

µ∗(A) ≤ `(G) = (b− a+ δ)− `(F ),

whence µ∗(A) + `(F ) ≤ b − a + δ. Since this is true for all δ > 0, we have
µ∗(A) + `(F ) ≤ b− a, whence

µ∗(A) + µ∗(B) ≤ µ∗(A) + `(F ) + ε ≤ b− a+ ε.

Since this is true for all ε > 0, we have µ∗(A) + µ∗(B) ≤ b− a. �
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Corollary 6. Let A ⊂ [a, b]. Then A is measurable if and only if

µ∗(A) + µ∗([a, b] rA) = b− a.

Corollary 7. Let A ⊂ [a, b]. Then A is measurable if and only if [a, b] r A is
measurable.

Proof. We prove both corollaries here.
Let B = [a, b] rA. Then [a, b] rB = A. Thus, by Proposition 24,

µ∗(A) + µ∗(B) = b− a and µ∗(B) + µ∗(A) = b− a,
so µ∗(A)− µ∗(A) = µ∗(B)− µ∗(B).

Now A is measurable if and only if the left hand side is zero, which is true if and
only if the right hand side is zero, which is true if and only if B is measurable.

Suppose A is measurable. Then so is B, and by Proposition 21, we have

µ∗(A) + µ∗([a, b] rA) = µ(A) + µ(B) = µ(A ∪B) = µ([a, b]) = b− a.
On the other hand, suppose µ∗(A) + µ∗(B) = b − a. Combine this Proposition

24 to obtain µ∗(B) = µ∗(B), so B is measurable. Hence, A is measurable. �

Proposition 25. Let I be an open interval and let A ⊂ I. Then µ∗(A)+µ∗(IrA) =
`(I).

Proof. This is the same as Proposition 24, except the ambient interval is open
rather than closed.

Using Proposition 24, we have

µ∗(A) + µ∗((a, b) rA) ≤ µ∗(A) + µ∗([b, a] rA) = b− a.
Let C = {a, b} r A. Then [a, b] r A = ((a, b) r A) ∪ C, and this is a disjoint

union. Thus
interval instead of a closed one. �

Proposition 26. Let S be a finite collection of bounded measurable sets. Then
∩S∈SS is measurable.

Corollary 8. Let S and T be measurable sets. Then T r S is measurable. Fur-
thermore, if S ⊂ T , then µ(T r S) = µ(T )− µ(S).

Proposition 27. Let S be a countable collection of measurable sets. Then ∪S is
measurable.

Proposition 28. Let S be a countable collection of measurable sets. Then ∩S is
measurable.

Theorem 4 (Caratheodory Condition). Let S be a bounded subset of R. Then S
is measurable if and only if, for every bounded A ⊂ R, we have

µ∗(A) = µ∗(A ∩ S) + µ∗(A ∩ Sc).

Theorem 5. The collection of all measurable sets is a σ-algebra.
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